Answers>Maths>IB>Article

Prove that (sinx)^2 + (cosx)^2 = 1

We start with the definitions of sine and cosine, which are, respectively: sinx = opposite/hypoteneuse and cosx = adjacent/hypoteneuse. We then square the analyzed expressions to get the following: 

(opposite ^2)/(hypoteneuse ^2) + (adjacent ^2)/(hypoteneuse ^2)

And since the denominators are the same, we can add the fractions to get: 

(opposite ^2) + (adjacent ^2) / (hypoteneuse ^2)

But recall the Pythagorean Theorem, according to which: (opposite ^2) + (adjacent ^2) = (hypoteneuse ^2). So we get:

[(hypoteneuse ^2)] / (hypoteneuse ^2) = 1. QED.

EA
Answered by Eno A. Maths tutor

12488 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Solve the equation sec^2 x+ 2tan x = 0, 0 ≤ x ≤ 2π. IB May 2017 Exam


a) Let u=(2,3,-1) and w=(3,-1,p). Given that u is perpendicular to w, find the value of p. b)Let v=(1,q,5). Given that modulus v = sqrt(42), find the possible values of q.


Find the first and second order derivative of the function, F(x)= 3x^3 - 7 + 5x^2, and then identify the maximum or minimum points.


Consider the functions f and g where f(x)=3x-5 and g(x)=x-2. (a) Find the inverse function for f. (b) Given that the inverse of g is x+2, find (g-1 o f)(x).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences