Answers>Maths>IB>Article

Prove that (sinx)^2 + (cosx)^2 = 1

We start with the definitions of sine and cosine, which are, respectively: sinx = opposite/hypoteneuse and cosx = adjacent/hypoteneuse. We then square the analyzed expressions to get the following: 

(opposite ^2)/(hypoteneuse ^2) + (adjacent ^2)/(hypoteneuse ^2)

And since the denominators are the same, we can add the fractions to get: 

(opposite ^2) + (adjacent ^2) / (hypoteneuse ^2)

But recall the Pythagorean Theorem, according to which: (opposite ^2) + (adjacent ^2) = (hypoteneuse ^2). So we get:

[(hypoteneuse ^2)] / (hypoteneuse ^2) = 1. QED.

EA
Answered by Eno A. Maths tutor

13826 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

What is integration by parts, and how is it useful?


Solve the equation sec^2 x+ 2tan x = 0, 0 ≤ x ≤ 2π. IB May 2017 Exam


Find the cube roots of i in the form a+bi, where a, b are real numbers.


Let Sn be the sum of the first n terms of the arithmetic series 2+4+6+... . Find (i) S4 ; (ii) S100 .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning