How was the quadratic formula obtained.

We want a solution to ax^2+bx+c=0. Complete the square to get a[(x+b/2a)^2 -(b^2)/(4a^2)]+c=0. Expalding brackets and rearanging gets a(x+b/2a)^2=(b^2)/4a -c. Divide by a to get (x+b/2a)^2= b^2/4a^2 -c/a=(b^2-4ac)/4a^2. Then root each side tot get (x+b/2a)=+-(root(b^2-4ac))/2a. Then simply move over the b/2a to get x=-b/2a+- (root(b^2-4ac))/2a=(-b+-(root(b^2-4ac)))/2a.

JH
Answered by Jon H. Maths tutor

3511 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

solve dy/dx = y(sec x)^2


The line AB has equation 3x + 5y = 7. Find the gradient of line AB.


x = 2t + 5, y = 3 + 4/t. a) Find dy/dx at (9.5) and b) find y in terms of x.


Curves C1 and C2 have equations y= ln(4x-7)+18 and y= a(x^2 +b)^1/2 respectively, where a and b are positive constants. The point P lies on both curves and has x-coordinate 2. It is given that the gradient of C1 at P is equal to the gradient of C2 at P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning