Find ∫ ( 2x^4 - 4x^(-0.5) + 3 ) dx

When integrating, you need to add one to the power and divide the term by the power. We will consider each term individually, 2x4 will become (2x4+1)/(4+1) = (2x5)/5, -4x-0.5 will become (-4x-0.5+1)/(-0.5+1) = (-4x0.5)/(0.5) = -8x0.5 and 3 = 3x0 will become (3x0+1)/(0+1) = 3x. Therefore, ∫ ( 2x^4 - 4x^(-0.5) + 3 ) dx = (2x5)/5 -8x0.5 + 3x + C, where C is a constant of integration. Since integration and differentiation are the inverse of each other, the C appears because there could have been a number which became zero when the formula was differentiated. Therefore, we must include a constant C when integrating. You can check your answer because differentiating the answer will give you the formula within the integral.

RM
Answered by Rebecca M. Maths tutor

7086 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express [1+4(square root)7] /[ 5+ 2(square root)7] in the form m + n (square root)7 , where m and n are integers.


Simultaneous Equations


Why do I need to add the + C when finding an indefinite integral?


If y=(a^(Sinx)) where a and k are given constants, find dy/dx in terms of a and x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning