Answers>Maths>IB>Article

How does Euclid's algorithm give solutions to equations?

Euclid's algorithm is really useful to be able to, firstly, see if two numbers are co-prime, in other words to see if they share any common factors, but also to find solutions to equations. Say we have two integers that satisfy: 32x + 24y = 16 Then we use Euclid's algorithm to first calculate the greatest common divisor (gcd) of 32 and 24. Hopefully, the method of this is ok? So we get gcd(32,24) = 8. Now, we can reverse what we did to get our solutions to the equation above. But don't forget that we had the equation equal to 16, not 8. This is often used in exams to trip up students, so look out for that.

AR
Answered by Abby R. Maths tutor

1700 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

What is the area enclosed by the functions x^2 and sqrt(x)?


Find the cube roots of i in the form a+bi, where a, b are real numbers.


Write down the expansion of (cosx + isinx)^3. Hence, by using De Moivre's theorem, find cos3x in terms of powers of cosx.


The sum of the first and third term of a geometric sequence is 72. The sum to infinity of this sequence is 360, find the possible values of the common ratio, r.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences