For a curve of gradient dy/dx = (2/(x^2))-x/4, determine a) d^2y/dx^2 b) the stationary point where y=5/2 c) whether this is a maximum or minmum point and d) the equation of the curve

a) Differentiating gives d2y/dx2=-4x-3-1/4

b) Let dy/dx=0 and rearrange to find x=2

c) Inserting x=2 into d2y/dx2=-4x-3-1/4 will show that d2y/dx2 is smaller than zero so this is a maximum stationary point.

d) To find the original equation of the curve, dy/dx must be intetgrated which gives y=-2x-1-x2/8+c

Substituting in x=2 when y=5/2 gives 2.5=-1-0.5+c

Rearrange to give c=4

So the final equation is y=-2x-1-x2/8+4

KM
Answered by Katie M. Maths tutor

5796 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative of f(x)=exp((tanx)^(1/2))


differentiate with respect to x: (x^3)(e^x)


Let p(x) = 30 x^3 -7 x^2 - 7 x + 2. Prove that (2x + 1) is a factor of p(x) and factorise p(x) completely.


The points A and B have coordinates (1, 6) and (7,− 2) respectively. (a) Find the length of AB.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning