Given that x=ln(t) and y=4t^3,a) find an expression for dy/dx, b)and the value of t when d2y/dx2 =0.48. Give your answer to 2 decimal place.

a) Firstly, differentiate x and y with respect to t. 

Giving you dx/dt = 1/t       and dy/dt = 12t2

dy/dx is found using the chain rule:

dy/dx = dy/dt x dt/dx = 12t3

b) You will need to differentiate dy/dx again with respect to t, to do this:

d2y/dx2=36t2 x dt/dx = 36t3

36t3=0.48

t=(0.48/36)1/3

t=0.24

SW
Answered by Sara W. Maths tutor

3544 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the following: 4x^3 + sin(x^2)


Express Cosx-3Sinx in form Rcos(x+a) and show that cosx-3sinx=4 has no solution MEI OCR June 2016 C4


How do you differentiate a function comprised of two functions multiplied together?


A block of mass 5kg is at rest on a smooth horizontal table, and connected to blocks of 3kg and 4kg which are hanging by strings via pulleys on either end of the table. Find the acceleration of the system and the tension in each string.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning