Given that x=ln(t) and y=4t^3,a) find an expression for dy/dx, b)and the value of t when d2y/dx2 =0.48. Give your answer to 2 decimal place.

a) Firstly, differentiate x and y with respect to t. 

Giving you dx/dt = 1/t       and dy/dt = 12t2

dy/dx is found using the chain rule:

dy/dx = dy/dt x dt/dx = 12t3

b) You will need to differentiate dy/dx again with respect to t, to do this:

d2y/dx2=36t2 x dt/dx = 36t3

36t3=0.48

t=(0.48/36)1/3

t=0.24

SW
Answered by Sara W. Maths tutor

3485 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve simultaneously: x + y + 3 = 0 and y = 2x^2 +3x - 1


A straight line passes through the point (2,1) and has a gradient of 3. Find the co-ordinates where the line crosses the x and y axes


A curve is described by the equation (x^2)+4xy+(y^2)+27=0. The tangent to the point P, which lies on the curve, is parallel to the x-axis. Given the x-co-ordinate of P is negative, find the co-ordinates of P.


By writing tan x as sin x cos x , use the quotient rule to show that d dx ðtan xÞ ¼ sec2 x .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning