Given that x=ln(t) and y=4t^3,a) find an expression for dy/dx, b)and the value of t when d2y/dx2 =0.48. Give your answer to 2 decimal place.

a) Firstly, differentiate x and y with respect to t. 

Giving you dx/dt = 1/t       and dy/dt = 12t2

dy/dx is found using the chain rule:

dy/dx = dy/dt x dt/dx = 12t3

b) You will need to differentiate dy/dx again with respect to t, to do this:

d2y/dx2=36t2 x dt/dx = 36t3

36t3=0.48

t=(0.48/36)1/3

t=0.24

SW
Answered by Sara W. Maths tutor

3041 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation 4x^2 - y^3 - 4xy + 2y = 0 . The point P with coordinates (-2, 4) lies on C. Find the exact value of dy/dx at the point P.


Using implicit differentiation, write the expression "3y^2 = 4x^3 + x" in terms of "dy/dx"


If I have a picture of a graph f(x), how can I draw what |f(x)| and 3f(x-2) look like?


A curve has the equation y=3x^2-2x+7, find the gradient of the line at the point (6,3)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences