Find the stationary pointsof the following: (y = x^3 - x^2 -16 x -17) and determine if each point is a maximum or minimum.

Notes; *Stationary (Turning) points are the points on the graph which are lowest or highest. (maximum or minima). *The gradient at a stationary point is zero. Steps:  1. Differentiate the function once to find the gradient function of the graph. (Find y') 2. Set the gradient function = to 0.  Solve this function to determine the x values of the stationary point(s). (Solve y' = 0) 3. Insert x values into original function to calculate the corrosponding y values.  4. Diffentiate gradient function to determine gradient of gradient and insert x values of max/min to determine if it is a maxima or minima. (Find y'' and insert xMin and xMax.) 5. If y > 0 it is a minimum and if y < 0 it is a maximum point.

CM
Answered by Charlie M. Maths tutor

3563 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = (1 + 3x^2)^(1/3) , use the chain rule to find dy/dx in terms of x.


Solve the equation x^6 + 26x^3 − 27 = 0


Find the two real roots of the equation x^4 -5=4x^2 Give the roots in an exact form.


a) Simplify 2ln(2x+1) - 10 = 0 b) Simplify 3^(x)*e^(4x) = e^(7)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning