Find the stationary pointsof the following: (y = x^3 - x^2 -16 x -17) and determine if each point is a maximum or minimum.

Notes; *Stationary (Turning) points are the points on the graph which are lowest or highest. (maximum or minima). *The gradient at a stationary point is zero. Steps:  1. Differentiate the function once to find the gradient function of the graph. (Find y') 2. Set the gradient function = to 0.  Solve this function to determine the x values of the stationary point(s). (Solve y' = 0) 3. Insert x values into original function to calculate the corrosponding y values.  4. Diffentiate gradient function to determine gradient of gradient and insert x values of max/min to determine if it is a maxima or minima. (Find y'' and insert xMin and xMax.) 5. If y > 0 it is a minimum and if y < 0 it is a maximum point.

CM
Answered by Charlie M. Maths tutor

3520 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the addition formulas: sin(x+y)=sin(x)*cos(y)+sin(y)*cos(x), cos(x+y)=cos(x)*cos(y)-sin(x)*sin(y) to derive sin(2x), cos(2x), sin(x)+sin(y).


What is the gradient of the curve y = 2x^3 at the point (2,2)?


What are the advantages of using numerical integration (Trapezium rule, Simpson's rule and so on) over direct integration?


Rationalise the surd: 2/root(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences