Integrate tan (x) with respect to x.

I = ∫ Tan (x) dx= ∫ (sin(x)) / (cos(x)) dx

We see that this is close to the standard integral  F'(x) / F(x) dx Ln (F(x)) + C

So first we must rewrite the Integral as: I = - ∫ (-sin(x)) / (cos(x)) dx (Taking minus one outside of the integral)

Now this is in the standard form and can be integrated;

I = - ∫ (-sin(x)) / (cos(x)) dx = - ln (cos (x)) + C

MH
Answered by Matthew H. Maths tutor

11664 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I recognise when to use a particular method for finding an integral?


How do we use the Chain-rule when differentiating?


Find a solution to sec^(2)(x)+2tan(x) = 0


Find the intersection coordinates of both axis with the function: f(x)=x^2-3x+4/3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences