Integrate tan (x) with respect to x.

I = ∫ Tan (x) dx= ∫ (sin(x)) / (cos(x)) dx

We see that this is close to the standard integral  F'(x) / F(x) dx Ln (F(x)) + C

So first we must rewrite the Integral as: I = - ∫ (-sin(x)) / (cos(x)) dx (Taking minus one outside of the integral)

Now this is in the standard form and can be integrated;

I = - ∫ (-sin(x)) / (cos(x)) dx = - ln (cos (x)) + C

MH
Answered by Matthew H. Maths tutor

12181 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx where y=e^(4xtanx)


given y=(1+x)^2, find dy/dx


Given y=rootx + 4/rootx = 4, find the value of dy/dx when x=8, writing your answer in the form aroot2, where a is a rational number.


Differentiate x^2 from first principles


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning