Integrate tan (x) with respect to x.

I = ∫ Tan (x) dx= ∫ (sin(x)) / (cos(x)) dx

We see that this is close to the standard integral  F'(x) / F(x) dx Ln (F(x)) + C

So first we must rewrite the Integral as: I = - ∫ (-sin(x)) / (cos(x)) dx (Taking minus one outside of the integral)

Now this is in the standard form and can be integrated;

I = - ∫ (-sin(x)) / (cos(x)) dx = - ln (cos (x)) + C

MH
Answered by Matthew H. Maths tutor

11770 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = arcsin(x) with respect to x


find the coordinate of the maximum value of the function f(x) = 9 – (x – 2)^2


An 1kg ball collides normally with a fixed vertical wall. Its incoming speed is 8 m/s and its speed after the collision is 4 m/s . Calculate the change in momentum of the particle. If the collision lasts 0.5 s calculate the impact force.


The line y = (a^2)x and the curve y = x(b − x)^2, where 0<a<b , intersect at the origin O and at points P and Q. Find the coordinates of P and Q, where P<Q, and sketch the line and the curve on the same axes. Find the tangent at the point P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences