Integral of (2(x^3)-7)/((x^4)-14x)

Set f(x)= (x^4)-14x. f’(x)=4(x^3)-14=2(2(x^3)-7). Thus we can write (2(x^3)-7)/((x^4)-14x)=(1/2)f’(x)/f(x). The integral of f’(x)/f(x)=ln|f(x)|+c. Thus the integral of (2(x^3)-7)/((x^4)-14x) is (1/2)(ln|f(x)|+c)=(1/2)ln|(x^4)-14x|+C.

IK
Answered by Issy K. Maths tutor

2929 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is the derivative of 2^x not x*2^(x-1)?


The straight line L1 passes through the points (–1, 3) and (11, 12). Find an equation for L1 in the form ax + by + c = 0, where a, b and c are integers


A function is defined as f(x) = x / sqrt(2x-2). Use the quotient rule to show that f'(x) = (x-2)/(2x-2)^(3/2)


Find y if dy/dx = y² sec²(x), given that y(0) = 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences