Integral of (2(x^3)-7)/((x^4)-14x)

Set f(x)= (x^4)-14x. f’(x)=4(x^3)-14=2(2(x^3)-7). Thus we can write (2(x^3)-7)/((x^4)-14x)=(1/2)f’(x)/f(x). The integral of f’(x)/f(x)=ln|f(x)|+c. Thus the integral of (2(x^3)-7)/((x^4)-14x) is (1/2)(ln|f(x)|+c)=(1/2)ln|(x^4)-14x|+C.

IK
Answered by Issy K. Maths tutor

3401 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why do you get e^x when you differentiate e^x


How do you derive the quadratic formula?


A tunnel has height, h, (in metres) given by h=14-x^2 where x is the horizontal distance from the centre of the tunnel. Find the cross sectional area of the tunnel. Also find the maximum height of a truck passing through the tunnel that is 4m wide.


Find the derivative of the function y = (2x + 12)/(1-x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning