Find the integral of tan^2x dx

You can not integrate tan2x but you can integrate sec2x Since sec2x = 1 + tan2x  Then tan2x = sec2x-1 so the intragral of tan2x dx = the integral of (sec2x-1) dx = intrgral of sec2x dx + integral of 1 dx = tanx-x +C

NP
Answered by Nandini P. Maths tutor

20152 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is dot product and how to calculate it?


A line L is parallel to y = 4x+5 and passes through the point (-1,6). Find the equation of the line L in the form y = ax+b.


The line L1 has vector equation,  L1 = (  6, 1 ,-1  ) + λ ( 2, 1, 0). The line L2 passes through the points (2, 3, −1) and (4, −1, 1). i) find vector equation of L2 ii)show L2 and L1 are perpendicular.


1)Simplify sqrt 98 - sqrt 32, givimg your answer in the form k sqrt 2 where k is an integer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences