Find the integral of tan^2x dx

You can not integrate tan2x but you can integrate sec2x Since sec2x = 1 + tan2x  Then tan2x = sec2x-1 so the intragral of tan2x dx = the integral of (sec2x-1) dx = intrgral of sec2x dx + integral of 1 dx = tanx-x +C

NP
Answered by Nandini P. Maths tutor

20840 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

You are given that n is a positive integer. By expressing (x^2n)-1 as a product of factors, prove that (2^2n)-1 is divisible by 3.


Find the values of x, where 0 < x < 360, such that x solves the equation: 8(tan[x])^2 – 5(sec[x])^2 = 7 + 4sec[x]


A curve has equation y = x^3 - 6x^2 - 15x. The curve has a stationary point M where x = -1. Find the x-coordinate of the other stationary point on the curve.


How do I do definite integrals?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning