A curve C is defined by the parametric equations x=(4-e^(2-6t))/4 , y=e^(3t)/(3t), t doesnt = 0. Find the exact value of dy/dx at the point on C where t=2/3 .

To solve this we must use the chain rule which is dy/dt * dt/dx. Firstly, we differentiate dy/dt. For this we must use the quotient rule, this gives us dy/dt=(9te^3t - 3e^3t)/9t^2. Now for dx/dt, by substituting u=2-6t and using the chain rule du/dt * dx/du we get du/dt=-6 and dx/du=-(e^u)/4, we times these together and substitute u=2-6t back in to get dx/dt=(3e^(2-6t))/2. Now we must times dy/dt * 1/(dx/dt) to give us dy/dx=(18te^(3t)-6e^(3t))/(27t^(2)e^(2-6t)). We now must substitute in t=2/3 to give us the exact point on the curve that we require. By doing this and then simplifying our answer we get the value of the gradient dy/dx=(e^4)/2.

LK
Answered by Lauren K. Maths tutor

5999 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is the definite integral between negative limits of a function with positive values negative even though the area bound by the x-axis is positive? for example the integral of y=x^2 between x=-2 and x=-1


I don’t think I’m smart enough for this course, should I drop it?


What is differentation and how does it work?


The finite region S is bounded by the y-axis, the x-axis, the line with equation x = ln4 and the curve with equation y = ex + 2e–x , (x is greater than/equal to 0). The region S is rotated through 2pi radians about the x-axis. Use integration to find the


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning