A curve C is defined by the parametric equations x=(4-e^(2-6t))/4 , y=e^(3t)/(3t), t doesnt = 0. Find the exact value of dy/dx at the point on C where t=2/3 .

To solve this we must use the chain rule which is dy/dt * dt/dx. Firstly, we differentiate dy/dt. For this we must use the quotient rule, this gives us dy/dt=(9te^3t - 3e^3t)/9t^2. Now for dx/dt, by substituting u=2-6t and using the chain rule du/dt * dx/du we get du/dt=-6 and dx/du=-(e^u)/4, we times these together and substitute u=2-6t back in to get dx/dt=(3e^(2-6t))/2. Now we must times dy/dt * 1/(dx/dt) to give us dy/dx=(18te^(3t)-6e^(3t))/(27t^(2)e^(2-6t)). We now must substitute in t=2/3 to give us the exact point on the curve that we require. By doing this and then simplifying our answer we get the value of the gradient dy/dx=(e^4)/2.

LK
Answered by Lauren K. Maths tutor

5862 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that the increase in the volume of a cube is given by dV/dt = t^3 + 5 (cm^3/s). The volume of the cube is initially at 5 cm^3. Find the volume of the cube at time t = 4.


A curve has equation -2x^3 - x^2 + 20x . The curve has a stationary point at the point M where x = −2. Find the x-coordinate of the other stationary point of the curve.


y=7-2x^5. What's dy/dx?Find an equation for the tangent to the curve where x=1. Is itan increasing or decreasing function when x=-2?


Find dy/dx when y = (3x-1)^10


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning