Given y = x^3 + 4x + 1, find the value of dy/dx when x=3

To differentiate this equation, you must bring the power of each x term down to the front and reduce the power of x by 1, with constants disappearing:

dy/dx = 3x3-1 + (41)*x1-1 =  3x2 + 4

To find the value of this when x=3, simply substitute this value into the equation for dy/dx:

dy/dx = 3(3)2 + 4 = 27 + 4 = 31

This value represents the gradient of the line y = x3+4x+1 when x=3.

FH
Answered by Florence H. Maths tutor

10709 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

i) It is given that f(x)=(-5-33x)/((1+x)(1+5x)), express f(x) in the form A/(1+x) + B/(1+5x) where A,B are integers. ii) hence express the integral of f(x) between x=3 and x=0 in the form (p/q)ln4 where p,q are integers.


The quadratic equation 2x^2 + 8x + 1 = 0 has roots a and b. Write down the value of a + b, a*b and a^2 + b^2.


What is the difference between a scalar and vector quantity?


What is the best way to prove trig identities?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning