Given y = x^3 + 4x + 1, find the value of dy/dx when x=3

To differentiate this equation, you must bring the power of each x term down to the front and reduce the power of x by 1, with constants disappearing:

dy/dx = 3x3-1 + (41)*x1-1 =  3x2 + 4

To find the value of this when x=3, simply substitute this value into the equation for dy/dx:

dy/dx = 3(3)2 + 4 = 27 + 4 = 31

This value represents the gradient of the line y = x3+4x+1 when x=3.

FH
Answered by Florence H. Maths tutor

10166 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the shortest distance between the line L: x=1+t, y=1+2t, z=1-t and the point A: (2,3,4)


Two lines have equations r = (1,4,1)+s(-1,2,2) and r = (2,8,2)+t(1,3,5). Show that these lines are skew.


Integrate 4x^3 with respect to x


Solve the equation 3 sin^2 theta = 4 cos theta − 1 for 0 ≤ theta ≤ 360


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning