Given y = x^3 + 4x + 1, find the value of dy/dx when x=3

To differentiate this equation, you must bring the power of each x term down to the front and reduce the power of x by 1, with constants disappearing:

dy/dx = 3x3-1 + (41)*x1-1 =  3x2 + 4

To find the value of this when x=3, simply substitute this value into the equation for dy/dx:

dy/dx = 3(3)2 + 4 = 27 + 4 = 31

This value represents the gradient of the line y = x3+4x+1 when x=3.

FH
Answered by Florence H. Maths tutor

10571 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Line AB has the equation 3x + 5y = 7. Find the gradient of Line AB.


The curve y = 4x^2 + a/x +5 has a stationary point. Find the value of the positive constant 'a' given that the y-coordinate of the stationary point is 32. (OCR C1 2016)


Differentiate the following... f(x)= 5x^4 +16x^2+ 4x + 5


Given that dx/dt = (1+2x)*4e^(-2t) and x = 1/2 when t = 0, show that ln[2/(1+2x)] = 8[1 - e^(-2t)]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning