Given y = x^3 + 4x + 1, find the value of dy/dx when x=3

To differentiate this equation, you must bring the power of each x term down to the front and reduce the power of x by 1, with constants disappearing:

dy/dx = 3x3-1 + (41)*x1-1 =  3x2 + 4

To find the value of this when x=3, simply substitute this value into the equation for dy/dx:

dy/dx = 3(3)2 + 4 = 27 + 4 = 31

This value represents the gradient of the line y = x3+4x+1 when x=3.

FH
Answered by Florence H. Maths tutor

10722 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinates of the point of intersection of the lines y = 5x - 2 and x + 3y = 8.


the line L goes through the points A (3,1) and B(4,-2). Find the equation for L.


Find the integral of a^(x) where a is a constant


State the interval for which sin x is a decreasing function for 0⁰ ≤ x ≤ 360⁰.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning