sin(x)/(cos(x)+1) + cos(x)/(sin(x)+1) = 1

sin^2(x) + sin(x) + cos^2(x) + cos(x) = cos(x)sin(x) + cos(x) + sin(x) +1

(sin^2(x) + cos^2(x) =1) Therefore;

1 +sin(x) + cos(x) = cos(x)sin(x) + sin(x) +cos(x) +1

Cancelling out on both sides

cos(x)sin(x) = 0

Solution: cos(x)=0 x=pi/2 + kpi sin(x)=0 x= 0+ kpi 

JO
Answered by James O. Maths tutor

4145 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of x where the curve y = 8 -4x-2x^2 crosses the x-axis.


Solve: 2 sin(2x) = (1-sin(x))cos(x) for 0<x<2*Pi and give any values of x, if any, where the equation is not valid


Differentiate y = (6x-13)^3 with respect to x


Find the maximum point of the curve from its given equation: [...]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning