sin(x)/(cos(x)+1) + cos(x)/(sin(x)+1) = 1

sin^2(x) + sin(x) + cos^2(x) + cos(x) = cos(x)sin(x) + cos(x) + sin(x) +1

(sin^2(x) + cos^2(x) =1) Therefore;

1 +sin(x) + cos(x) = cos(x)sin(x) + sin(x) +cos(x) +1

Cancelling out on both sides

cos(x)sin(x) = 0

Solution: cos(x)=0 x=pi/2 + kpi sin(x)=0 x= 0+ kpi 

JO
Answered by James O. Maths tutor

4127 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation kx^2 + 4x + (5 – k) = 0, where k is a constant, has 2 different real solutions for x. Show that k satisfies k^2-5k+4>0.


What marks do I need to achieve an A* grade in A-level Maths?


Find the stationary point(s) of the curve: y = 3x^4 - 8x^3 - 3.


Let f(x) = x * sin(2x). Find the area beneath the graph of y = f(x), bounded by the x-axis, the y-axis and the line x = π/2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning