sin(x)/(cos(x)+1) + cos(x)/(sin(x)+1) = 1

sin^2(x) + sin(x) + cos^2(x) + cos(x) = cos(x)sin(x) + cos(x) + sin(x) +1

(sin^2(x) + cos^2(x) =1) Therefore;

1 +sin(x) + cos(x) = cos(x)sin(x) + sin(x) +cos(x) +1

Cancelling out on both sides

cos(x)sin(x) = 0

Solution: cos(x)=0 x=pi/2 + kpi sin(x)=0 x= 0+ kpi 

JO
Answered by James O. Maths tutor

3803 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the smallest possible value of the integral ∫(x-a)^2 dx between 0 and 1 as a varies?


How do I use product rule when differentiating?


The line AB has equation 3x + 5y = 7. Find the gradient of line AB.


Suppose a population of size x experiences growth at a rate of dx/dt = kx where t is time measured in minutes and k is a constant. At t=0, x=xo. If the population doubles in 5 minutes, how much longer does it take for the population to reach triple of Xo.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences