The point A lies on the curve with equation y = x^(1/2). The tangent to this curve at A is parallel to the line 3y-2x=1. Find an equation of this tangent at A. (PP JUNE 2015 AQA)  

My exact explanation would depend on the students level of understanding. The following answer assumes a basic understanding of differentiation and equations of lines; a) Gradient of tangent is equal to gradient of 3y - 2x = 1 which can be found by rearranging the equation. (2/3)  b) We can find out where along the curve y=x1/2 we get a gradient of 2/3 (since the curve is not linear)  c) This gives us the X coordinate which we can sub into the intial curve to get the y coordinate of point A.  d) We now have the coordinates of a point on the curve and the gradient of a curve. We can therfore use the general equation of a line to work out the equation of the line. (y - y1 = M ( x - x1) ). 

SC
Answered by Sefret C. Maths tutor

6975 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y=7-2x^5. What's dy/dx?Find an equation for the tangent to the curve where x=1. Is itan increasing or decreasing function when x=-2?


Find the integral of 4sqrt(x) - 6/x^3.


The General Form of the equation of a circle is x^2 + y^2 + 2gx +2fy + c = 0. Find the centre of the circle and the radius of the circle in terms of g f and c.


Solve: 2 sin(2x) = (1-sin(x))cos(x) for 0<x<2*Pi and give any values of x, if any, where the equation is not valid


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences