Find the coordinate of the turning point of the curve y = x^2 - 10x + 7, by completing the square

First, we need to complete the square. We take the first part of the equation ignoring the constant ( + 7).  

y = x2 - 10x , we want to change the form of this equation from  x2 + ax + (a/2)2  into ( x + a/2 )2

y = ( x - 5 )2 - 25, what we did here was half the 10, and turn it into  ( x - 5 )2  and we then subtracted the square of half of 10.

We then need to remember the constant + 7, so we add this back to the equation. y = ( x - 5 )2 - 25 + 7 = ( x - 5 )2 - 18.

The coordinate of the turning point is then ( 5, -18).

JP
Answered by James P. Maths tutor

9943 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the possible values of cos(x) from 5cos^2(x) - cos(x) = sin^2(x)?


A particle of mass 0.8 kg moving at 4 m/s rebounds of a wall with coefficient of restitution 0.3. How much Kinetic energy is lost?


A curve is described by the equation (x^2)+4xy+(y^2)+27=0. The tangent to the point P, which lies on the curve, is parallel to the x-axis. Given the x-co-ordinate of P is negative, find the co-ordinates of P.


The velocity of a moving body is given by an equation v = 30 - 6t, where v - velocity in m/s, t - time in s. A) What is the acceleration a in m/s^2? B) Find the expression for the displacement s in terms of t given the initial displacement s(0)=10 m.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning