Integrate (cosx)^3

In order to integrate (cosx)^3, there is no given rule (by-parts, 'try' method, chain rule) which we can follow. We would need to split it into (cosx)^2 and cosx. Then use the identity: (sinx)^2 + (cosx)^2 = 1. The function we are now integrating should look like this: (1-(sinx)^2)(cosx). Expand the brackets. Once the brackets have been expanded, cosx can be integrated to give sinx. Then we can use the 'try' method to integrate cosx(sinx)^2. 

SS
Answered by Shivani S. Maths tutor

13773 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the function f(x,y)=x^3 + y^3 -3xy at the point (2,1), given that f(2,1) = 6.


Find values of y such that: log2(11y–3)–log2(3) –2log2(y) = 1


The function f(x) is defined by f(x) = 1 + 2 sin (3x), − π/ 6 ≤ x ≤ π/ 6 . You are given that this function has an inverse, f^ −1 (x). Find f^ −1 (x) and its domain


differentiate y=e^2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning