MYTUTOR SUBJECT ANSWERS

401 views

How do you factorise a quadratic equation?

If you are given a simple quadratic equation, for example x2+6x+8=0, then in order to factorise this you must find two numbers that add together to make the coefficient of x in the equation (in this case the coefficient is 6) and multiply together to find the constant (in this case 8).

In order to do this you must find the pairs of factors that multiply together to make the constant, so for this example the factors of +8 are 1&8, 2&4, (-1)&(-8) and (-2)&(-4), then using these factors you have to find a pair that will add together to make the coefficient of x, which we know is 6. Therefore the only pair of factors that will add up to 6 are 2 & 4.

So we place these into brackets like so:
(x+2)(x+4)=0

To check your answer you can simply expand the brackets again, which would give you :
x2+2x+4x+8=0
Simplifying to:
x2+6x+8=0, which is what we originally started with therefore showing that we have factorised correctly.

Factorising quadratics can become more complicated when there are negatives or coefficients of xthat are greater than 1. Solving quadratics with negative signs for example: x2-4x-12=0 is done the same way as before. The factors of -12 are: 1&(-12), (-1)&12, 2&(-6), (-2)&6, 3&(-4) and (-3)&4. Then added together the only factors that make -4 are (-6)&2. Therefore the answer would be (x-6)(x+2)=0

They become even more tricky when the coefficient of x2 is greater than 1. For example: 2x2+5x+2=0. You then have to also consider the factors of the coefficient of x2

The only factors of the constant 2 are 1&2 and (-2)&(-1). However one of the factors in a pair will be multiplied by 2, so these factors become: 2&2, 1&4, (-4)&(-1) and (-2)&(-2). We then need to find out which of these factors add up to 5, which we can see is 1&4.

So our final answer is (2x+1)(x+4).

 

Erin R. GCSE Maths tutor, A Level Maths tutor

2 years ago

Answered by Erin, an A Level Maths tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

179 SUBJECT SPECIALISTS

£20 /hr

Isabel R.

Degree: Mathematics (Bachelors) - Manchester University

Subjects offered: Maths, Physics+ 1 more

Maths
Physics
Further Mathematics

“I am currently a first year studying Mathematics at the University of Manchester-so A Levels and GCSEs are still fresh in my mind when it comes to remembering how I learnt the material myself. In school I mentored GCSE students in Mat...”

MyTutor guarantee

£22 /hr

Alex B.

Degree: Physics (Masters) - Durham University

Subjects offered: Maths, Physics

Maths
Physics

“About me: I’m Alex and I have just completed my first year studying physics at Durham University, with a first. I have a passion for mathematics and how it can be applied to solve problems in physics. Throughout my A levels, other stu...”

£20 /hr

Noam T.

Degree: Mathematics with Mathematical Physics (Bachelors) - University College London University

Subjects offered: Maths, Physics

Maths
Physics

“About Myself: I am an undergraduate student at UCL studying Mathematics with Mathematical Physics. Hoping to go into research after my degree, I have a true passion for my subjects and my aim is to pass on that passion to students in ...”

About the author

Erin R.

Currently unavailable: until 17/01/2016

Degree: Mathematics (Bachelors) - Exeter University

Subjects offered: Maths

Maths

“Hi, I'm Erin, a first year maths student at the University of Exeter. I gained an A* in GCSE and A-Level maths meaning that I have the necessary knowledge tohelp you reach your full potential. Maths has always been my favourite subjec...”

MyTutor guarantee

You may also like...

Other A Level Maths questions

How does finding the gradient of a line and the area under a graph relate to real world problems?

What is a 'derivative'?

How do you use trigonometry to work out angles and lengths of sides in a right angle triangle

How does one find the derivative of ln(x)?

View A Level Maths tutors

Cookies:

We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok