Solve the differential equation dx/dt=-6*x , given when t=0 x=7.

You start by seperating the variables giving,

(1/x)*dx=(-6)*dt

you then integrate both sides with respect to the variables,

ln(x)=-6*t+c

you then subsitute in the given conditions to find 'c',

ln(7)=0+c    therefore c=ln(7)

ln(x)=-6t+ln(7)

taking exponential of each element gives:

x=exp(-6t)+7

LC
Answered by Lucy C. Maths tutor

7886 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By using partial fractions, integrate the function: f(x) = (4-2x)/(2x+1)(x+1)(x+3)


Why do I have to add +c when I integrate?


The curve C has parametric equations x=2cos(t) and y=3cos(2t). Find and expression for dy/dx in terms of t.


Solve the inequality |4x-3|<|2x+1|.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences