Solve the differential equation dx/dt=-6*x , given when t=0 x=7.

You start by seperating the variables giving,

(1/x)*dx=(-6)*dt

you then integrate both sides with respect to the variables,

ln(x)=-6*t+c

you then subsitute in the given conditions to find 'c',

ln(7)=0+c    therefore c=ln(7)

ln(x)=-6t+ln(7)

taking exponential of each element gives:

x=exp(-6t)+7

LC
Answered by Lucy C. Maths tutor

7980 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to find the derivative of arctan(x)


How do I differentiate y=(4+9x)^5 with respect to x?


Can I have help with integrating by parts? I am unsure on how to use the formula.


Given that cos(x) = 1/4, what is cos(2x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences