Solve the differential equation dx/dt=-6*x , given when t=0 x=7.

You start by seperating the variables giving,

(1/x)*dx=(-6)*dt

you then integrate both sides with respect to the variables,

ln(x)=-6*t+c

you then subsitute in the given conditions to find 'c',

ln(7)=0+c    therefore c=ln(7)

ln(x)=-6t+ln(7)

taking exponential of each element gives:

x=exp(-6t)+7

LC
Answered by Lucy C. Maths tutor

7936 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

given that at a time t, a particle is accelerating in the positive x-direction at 1/t ms^-2, calculate the velocity and the displacement of the particle at time t = 2s


Differentiate the equation x^2 + 2y^2 = 4x


Find the equation of the tangent to the circle x^2 + y^2 + 10x + 2y + 13 = 0 at the point (-3, 2)


What is 'completing the square' and how can I use it to find the minimum point of a quadratic curve?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences