Solve the differential equation dx/dt=-6*x , given when t=0 x=7.

You start by seperating the variables giving,

(1/x)*dx=(-6)*dt

you then integrate both sides with respect to the variables,

ln(x)=-6*t+c

you then subsitute in the given conditions to find 'c',

ln(7)=0+c    therefore c=ln(7)

ln(x)=-6t+ln(7)

taking exponential of each element gives:

x=exp(-6t)+7

LC
Answered by Lucy C. Maths tutor

7843 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The region below the curve y = e^x + e^(-x) and the lines x = 0, x = ln4 is rotated 2π radians about the x-axis. Find the volume of the resulting solid.


The line L1 has vector equation,  L1 = (  6, 1 ,-1  ) + λ ( 2, 1, 0). The line L2 passes through the points (2, 3, −1) and (4, −1, 1). i) find vector equation of L2 ii)show L2 and L1 are perpendicular.


The equation of curve C is 3x^2 + xy + y^2 - 4x - 6y + 7 = 0. Use implicit differentiation to find dy/dx in terms of x and y.


Express 4sin(x)+6cos(x) in terms of Rsin(x+a) where R and a are constants to be determined (a should be given in rad).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences