Find the integral of a^(x) where a is a constant

Starting with ∫ax dx ,
We can re-write ax using logs as eln(a)*x using some of their properties
We use the substitution u = ln(a)*x (as such du/dx = ln(a)) allowing us to easily integrate eu  with respect to u, by substituting du/ln(a) in the place of dx
The result is eu/ln(a) + c and after re-writing in terms of x by we get an answer of:
ax/ln(a) +c

AP
Answered by Andreas P. Maths tutor

3121 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 4x/(x^2-9)-2/(x+3) as a single fraction in its simplest form


The curve C has equation y = 2x^2 - 12x + 16 Find the gradient of the curve at the point P (5, 6).


Find the maximum value of 2sin(x)-1.5cos(x)


How would you integrate ln(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences