Find the integral of a^(x) where a is a constant

Starting with ∫ax dx ,
We can re-write ax using logs as eln(a)*x using some of their properties
We use the substitution u = ln(a)*x (as such du/dx = ln(a)) allowing us to easily integrate eu  with respect to u, by substituting du/ln(a) in the place of dx
The result is eu/ln(a) + c and after re-writing in terms of x by we get an answer of:
ax/ln(a) +c

AP
Answered by Andreas P. Maths tutor

3455 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation 3^(5x-2)=4^(6-x), and show that the solution can be written in the form log10(a)/log10(b).


If I have the equation of a curve, how do I find its stationary points?


ABCD is a rectangle with sides of lengths x centimetres and (x − 2) centimetres.If the area of ABCD is less than 15 cm^2 , determine the range of possible values of x.


3(a+4)=ac+5f. Rearrange to make a the subject.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning