Let f(x) = 5x^4 + 6x^3 + 3, find dy/dx at x = 3

First we must differentiate the equation with respect to x. To differentiate you must multiply the coefficient (number in front) by the power of x, then subtract 1 from the power. So here we find dy/dx = (54)x^(4-1) + (63)x^(3-1) + (1*0) = 20x^3 + 18x^2.

To find the value of dy/dx at x=3 we must substitute x=3 into the equation we just found. This gives dy/dx = (203^3) + (183^2) = 540 + 162 = 702. This value is the gradient of the line at x=3.

FK
Answered by Francesca K. Maths tutor

3485 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the best way to prove trig identities?


Integrate cos(x)sin^2(x)


A curve is described by f(x) = x^2 + 2x. A second curve is described by g(x) = x^2 -5x + 7. Find the point (s) where both curves intersect.


A tank is filled with water up to the height H0. At the bottom of the tank, there is a tap which is opened at t=0. How does the height of liquid change with time?(Hint: dH/dt is proportional to -H)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning