Let f(x) = 5x^4 + 6x^3 + 3, find dy/dx at x = 3

First we must differentiate the equation with respect to x. To differentiate you must multiply the coefficient (number in front) by the power of x, then subtract 1 from the power. So here we find dy/dx = (54)x^(4-1) + (63)x^(3-1) + (1*0) = 20x^3 + 18x^2.

To find the value of dy/dx at x=3 we must substitute x=3 into the equation we just found. This gives dy/dx = (203^3) + (183^2) = 540 + 162 = 702. This value is the gradient of the line at x=3.

FK
Answered by Francesca K. Maths tutor

3606 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When Integrating by parts, how do you know which part to make "u" and "dv/dx"?


Find the area encompassed by y=(3-x)x^2 and y=x(4-x) between x=0 and x=2.


Find the gradient of the curve with the equation y = x^3+7x^2+1 at x=2


The line AB has equation 5x + 3y + 3 = 0. The line AB is parallel to the line with the equation y = mx + c. Find the value of m.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning