A tunnel has height, h, (in metres) given by h=14-x^2 where x is the horizontal distance from the centre of the tunnel. Find the cross sectional area of the tunnel. Also find the maximum height of a truck passing through the tunnel that is 4m wide.

Firstly, solve 0=14-x^2 to find the horisontal distance to the edges of the tunnel. x1=sqrt(14), x2= -sqrt(14).

Integrate h=14-x^2 between x1 and x2 28*sqrt(14) -(2(sqrt(14)^3))/3. This is the required area

Next, the center of the tunnel is the heighest point so we would place the center of the truck here. Threfore, the edges of the truck are at x=2 and x=-2. The height of the tunnel here is 14-(2^2) = 14-((-2)^2) = 14-4 = 10. Therefore 10 is the max height.

JG
Answered by James G. Maths tutor

7332 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Factorise completely x-4x^3


Find the turning value of the following function, stating whether the value is min or max, y = x^2 -6x + 5


Two forces P and Q act on a particle. The force P has magnitude 7 N and acts due north. The resultant of P and Q is a force of magnitude 10 N acting in a direction with bearing 120°. Find the magnitude of Q and the bearing of Q.


How would I find the approximate area enclosed by the expression e^x*sin(x)*x^3 on an infinite scale?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences