A tunnel has height, h, (in metres) given by h=14-x^2 where x is the horizontal distance from the centre of the tunnel. Find the cross sectional area of the tunnel. Also find the maximum height of a truck passing through the tunnel that is 4m wide.

Firstly, solve 0=14-x^2 to find the horisontal distance to the edges of the tunnel. x1=sqrt(14), x2= -sqrt(14).

Integrate h=14-x^2 between x1 and x2 28*sqrt(14) -(2(sqrt(14)^3))/3. This is the required area

Next, the center of the tunnel is the heighest point so we would place the center of the truck here. Threfore, the edges of the truck are at x=2 and x=-2. The height of the tunnel here is 14-(2^2) = 14-((-2)^2) = 14-4 = 10. Therefore 10 is the max height.

JG
Answered by James G. Maths tutor

8225 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x)=(2x+1)/(x-1) with domain x>3. (a)Find the inverse of f(x). (b)Find the range of f(x). (c) g(x)=x+5 for all x. Find the value of x such that fg(x)=3.


What does differentiation actually mean?


Do y=3x^2+5x+12 and y=3x-8 intercept with each other? If yes, at which point(s)?


A sweet is modelled as a sphere of radius 10mm and is sucked. After five minutes, the radius has decreased to 7mm. The rate of decrease of the radius is inversely proportional to the square of the radius. How long does it take for the sweet to dissolve?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning