intergrate xcos(2x) with respect to x

The function of x has two separate x terms multiplied by each other. Therefore, the appropriate way to integrate this function is by parts. The equation for integration by parts is [integral (u.dv/dx)] = uv - [intergral (v.du/dx)]. The first step of integration by parts is to decide which term is the "u" term and which term is the "dv/dx" term. The best way to decide this term is to see which function you would rather differentiate to make the integral easier. From this question it can be seen that the "x" term would be easier as it differentiates to 1. A general rule of thumb is to use the acronym LATE to decide "u". This describes the order of preference for deciding your "u" function. L - logarithmic, A - algebraic, T - trigonometric, E- exponential. As A come before T it is clear to see that "x" should be the u and cos(2x) should be the dv/dx term. Once that is decided then you find the du/dx and v terms and plug into the equation to get: (xsin2x)/2 - [integral sin2x/2]. You then integrate the second function to get a final answer of: (xsin2x)/2 + cos2x/4 (+ C). This can be simplified to: 1/4(2xsin2x + cos2x + D) where D = C/4.

MI
Answered by Mark I. Maths tutor

6163 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the difference between a scalar product and a vector product, and how do I know which one to use in questions?


A 1kg mass is launched from the ground into the air at an angle of 30 degrees to the horizontal and with initial speed 25 ms^-1. Assuming negligible air resistance, how far from the starting point will the mass travel before it hits the ground?


Find and classify all the stationary points of the function f(x) = x^3 - 3x^2 + 8


The curve C has equation (4x^2-y^3+3^2x)=0. The point P (0,1) lies on C: what is the value of dy/dx at P?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning