Complete this substitution question: x^​3 - 25 = 103 - x^​3

Firstly, let's move the x^​3's onto the same side (and preferably keep them positive). Let's add x^​3 to both sides, which means the RHS will now read '2x^​3 - 25' and the LHS will read '103'. Next we want to get the numbers onto the same side, so let's add 25 to both sides (again, to keep the numbers positive). This leaves us with 2x^​3=128. Next we need to divide both sides by 2 (to get rid of the 2 in from of the x^​3 term). This means x^​3=64. After cube routing both sides, we have arrived at our answer of 'x=4'.

AJ
Answered by Aoife J. Maths tutor

3026 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the square root of 25?


Solve these equations simultaneously: (1) 5x - 10z = -45 and (2) 9x = -5z + 80


Fully expand (2x+4)(4x-3).


Expanding and simplifying, e.g. (x+4)(x-2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning