(3 + root(a))(4 + root(a)) = 17 + k(root(a)) where a and k are positive integers. Find the value of a and the value of k.

Let's open out the bracket using the FOIL method (first, outside, inside, last):

(3 + root(a))(4 + root(a)) = 12 + 3root(a) + 4root(a) + (root(a))2 = 12 + 7root(a) + a.

Since the answer 17 + k(root(a)) is in the form of an integer + surd, we must equate the integers and surds of 12 + 7root(a) + a     with       17 + k(root(a)).

Therefore, 12 + a = 17       so     a = 5

7root(a) = k(root(a))           so     k = 7.

AJ
Answered by Abhinav J. Maths tutor

9695 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify (3x^2 + 2)(2x + 5) – 6x(x^2 – 3)


y is inversely proportional to d^2. When d = 10, y = 4. d is directly proportional to x^2. When x = 2, d = 24. Find a formula for y in terms of x. Give your answer in its simplest form.


factorise fully: 10pq +15pqr


Determine the equation of the line which is perpendicular to y = 2x + 9 and crosses through the point (1,2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning