(3 + root(a))(4 + root(a)) = 17 + k(root(a)) where a and k are positive integers. Find the value of a and the value of k.

Let's open out the bracket using the FOIL method (first, outside, inside, last):

(3 + root(a))(4 + root(a)) = 12 + 3root(a) + 4root(a) + (root(a))2 = 12 + 7root(a) + a.

Since the answer 17 + k(root(a)) is in the form of an integer + surd, we must equate the integers and surds of 12 + 7root(a) + a     with       17 + k(root(a)).

Therefore, 12 + a = 17       so     a = 5

7root(a) = k(root(a))           so     k = 7.

AJ
Answered by Abhinav J. Maths tutor

8772 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The equation of a straight line is 3x + 2y = 24. Find where the line crosses the x-axis.


The rectangles A and B have perimeters of 94cm and 56cm as shown below (insert diagram). Rectangle A: base = 2x cm, height = 3y cm. Rectangle B: base = (x+6)cm, height = (y+4)cm. Use an algebraic method to calculate the area of each rectangle. (8 marks)


Rearrange the following equation to make 'm' the subject: 4 (m - 2) = t (5m + 3) [4 marks]


Fully simplify this equation; 3x^3 - x(3x+36) = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences