Integrate 5cos(3x - 1) with respect to x

Firstly, we may simplify the expression by factoring out any constants. In this case 5 can be factored out. 

5 ∫ cos(3x-1) dx 

For the integrand cos(3x -1), we can use a simple u-substitution. Where u = 3x -1 and du = 3dx. 

Our integral is then simplified to 5 ∫ cos(u) du/3

The integral of cos(u) is equal to sin(u)

And therefore the solution becomes: (5/3)*sin(u) + constant

Subsituting for u: (5/3)*sin(3x-1) + constant

RM
Answered by Rian M. Maths tutor

5672 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y=e^(2x) - x^3. Find dy/dx. (please note this is "e to the power of 2x, minus x cubed")


How do you find stationary points of an equation, eg. y=x^2+3x+2


What is the point of differentiation?


Integrating (e^x)sin(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning