Integrate 5cos(3x - 1) with respect to x

Firstly, we may simplify the expression by factoring out any constants. In this case 5 can be factored out. 

5 ∫ cos(3x-1) dx 

For the integrand cos(3x -1), we can use a simple u-substitution. Where u = 3x -1 and du = 3dx. 

Our integral is then simplified to 5 ∫ cos(u) du/3

The integral of cos(u) is equal to sin(u)

And therefore the solution becomes: (5/3)*sin(u) + constant

Subsituting for u: (5/3)*sin(3x-1) + constant

RM
Answered by Rian M. Maths tutor

5504 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=(3+sin(2x))/(2+cos(2x))


What is the coefficient of the x^3 term in the binomial expansion of (2x+(1/3x^2))^9


Using integration by parts, and given f(x) = 3xcos(x), find integrate(f(x) dx) between (pi/2) and 0.


x^2 + y^2 + 10x + 2y - 4xy = 10. Find dy/dx in terms of x and y, fully simplifying your answer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning