Integrate 5cos(3x - 1) with respect to x

Firstly, we may simplify the expression by factoring out any constants. In this case 5 can be factored out. 

5 ∫ cos(3x-1) dx 

For the integrand cos(3x -1), we can use a simple u-substitution. Where u = 3x -1 and du = 3dx. 

Our integral is then simplified to 5 ∫ cos(u) du/3

The integral of cos(u) is equal to sin(u)

And therefore the solution becomes: (5/3)*sin(u) + constant

Subsituting for u: (5/3)*sin(3x-1) + constant

RM
Answered by Rian M. Maths tutor

5676 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the function f(x) = 3x^2/sin(2x)


A circle with center C has equation x^2 + y^2 + 8x - 12y = 12


What is the centre and radius of the circle with the equation x(x-2)+y(y+6)+4=0 ?


What is the cosine rule and how do I use it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning