The second term of an arithmetic sequence is 7. The sum of the first four terms of the arithmetic sequence is 12. Find the first term, a, and the common difference, d, of the sequence.

Let a be the first term

Let d be the common difference

a + d = 7

S4 = 4/2 (2a +3d) = 12

Simultaneous equation:

a+d =7 // x 6
4a +6d = 12

Difference btween these two

6a + 6d = 42

4a +6d = 12

2a = 30

a = 15

d = 7 -a 

thus d = -8, a = 15

AT
Answered by Alexander T. Maths tutor

21224 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A) Multiply out 6(n - 2). B) Factorise psquared - 5p


Write the number 0.000000001 in standard form.


What rules should I look out for when manipulating expressions?


What's the best way to work out any percentage of a given number, e.g. 63% of 450?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning