The second term of an arithmetic sequence is 7. The sum of the first four terms of the arithmetic sequence is 12. Find the first term, a, and the common difference, d, of the sequence.

Let a be the first term

Let d be the common difference

a + d = 7

S4 = 4/2 (2a +3d) = 12

Simultaneous equation:

a+d =7 // x 6
4a +6d = 12

Difference btween these two

6a + 6d = 42

4a +6d = 12

2a = 30

a = 15

d = 7 -a 

thus d = -8, a = 15

AT
Answered by Alexander T. Maths tutor

21610 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Explain the general formula for a sraight line?


A boat travels due North at 5km/h for 3 hours, then changes course and sails due east for 2 hours, adjusting his speed to 8km/h. What is his total displacement from his original position?


Prove algebraically that the square of any odd number is always also an odd number.


Solve for X and Y: 2y + x = 7; 3y - x = 8


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning