The second term of an arithmetic sequence is 7. The sum of the first four terms of the arithmetic sequence is 12. Find the first term, a, and the common difference, d, of the sequence.

Let a be the first term

Let d be the common difference

a + d = 7

S4 = 4/2 (2a +3d) = 12

Simultaneous equation:

a+d =7 // x 6
4a +6d = 12

Difference btween these two

6a + 6d = 42

4a +6d = 12

2a = 30

a = 15

d = 7 -a 

thus d = -8, a = 15

AT
Answered by Alexander T. Maths tutor

21601 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 3x – 5 < 16


How do you solve quadratic inequalities?


Sam is a bodybuilder. He currently weighs 90kg, but is aiming to be at 130kg in the next four months. Every month, he puts on 8% of his weight. Does he reach his target?


factorise fully: 10pq +15pqr


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning