The second term of an arithmetic sequence is 7. The sum of the first four terms of the arithmetic sequence is 12. Find the first term, a, and the common difference, d, of the sequence.

Let a be the first term

Let d be the common difference

a + d = 7

S4 = 4/2 (2a +3d) = 12

Simultaneous equation:

a+d =7 // x 6
4a +6d = 12

Difference btween these two

6a + 6d = 42

4a +6d = 12

2a = 30

a = 15

d = 7 -a 

thus d = -8, a = 15

AT
Answered by Alexander T. Maths tutor

20938 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 3y + 2x = 10, 4x - y + 3 = 2


Make x the subject 2x+3=3x-1


The straight line L1 passes through the points with coordinates (4, 6) and (12, 2) The straight line L2 passes through the origin and has gradient -3. The lines L1 and L2 intersect at point P. Find the coordinates of P.


What is the highest common factor and lowest common multiple?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences