Show, by counter-example, that the statement "If cos(a) = cos(b) then sin(a) = sin(b)" is false.

Let a=60 and b=300.

Then cos(a)=cos(60)=0.5 and cos(b)=cos(300)=0.5, therefore cos(a)=cos(b).

Then sin(a)=sin(60)=sqrt(3)/2 and sin(b)=sin(300)=-sqrt(3)/2, therefore sin(a)=sin(b) is incorrect.

Therefore we have a contradiction, and the statement is false.

OG
Answered by Osian G. Maths tutor

4177 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x) = (x-5)/(x^2+5x+4), express this in partial fractions and hence find the integral of f(x) dx between x=0 and x=2, giving the answer as a single simplified logarithm.


By first expanding the brackets, differentiate the equation: y=(4x^4 + 3x)(2x^2 - 9)


What is the product rule in differentiation?


The curve C has equation 2yx^2 + 2x + 4y - cos(πy) = 45. Using implicit differentiation, find dy/dx in terms of x and y


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning