find dy/dx at t, where t=2, x=t^3+t and y=t^2+1

We know from simple fraction rules that dy/dx=(dy/dt)/(dx/dt). dy/dt=2t, dx/dt=3t^2+1. Therefore, dy/dx=2x2/12+1=4/13

NO
Answered by Niamh O. Maths tutor

6158 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of xe^(-2x) between the limits of 0 and 1 with respect to x.


FInd the equation of the line tangent to the graph g(x)=integral form 1 to x of cos(x*pi/3)/t at the point x=1


If f(x)= ( ((x^2) +4)(x-3))/2x find f'(x)


Find the indefinite integral of ( 32/(x^3) + bx) over x for some constant b.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning