Differentiate with respect to x: y = ln(x^2+4*x+2).

Let u = x2+4x+2 so y = ln(u).

Then dy/du = 1/u and du/dx = 2x+4.

Using the chain rule we have:

dy/dx = (dy/du)*(du/dx)

= (1/u)*(2x+4)

= (2x+4)/(x2+4x+2).

OL
Answered by Okim L. Maths tutor

4943 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of sin^2(X)


If the function f is defined as f= 1-2x^3 find the inverse f^-1


How do you integrate ln(x)


Prove by induction that the nth triangle number is given by n(n+1)/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning