Solve the equation 5^(2x) - 12(5^x) + 35 = 0

The first step to solving this is equation is to notice that the equation is of a similar to the form of a quadratic equation: ay^2 + by + c  = 0 where a, b and c are constants. Next we introduce a new variable z = 5^x to reduce the equation to z^2 - 12 z + 35 = 0. Now we just need to solve the quadratic equation in z. First, we check if this is factorisable i.e. can be written as (z+a)(z+b) = 0. So we compare z^2 - 12 z + 35 and (z + a)(z + b) = z^2 + (a+b) z + ab. Therefore ab = 35 and a+b = -12. Next lets note that the factors of 35 are 1, 5, 7 and 35 as a and b have to be factors of 35. By considering the factors it should be clear that the choice of a is -5 aand b is -7 (note it does not matter which of -5 and -7 we assign to a and b). 

So we can write the quadratic equation in z as (z-5)(z-7) = 0 the solutions are z = 5 because this makes the first bracket = 0 and z = 7 because this makes the second bracket = 0. We defined z at the beginning as z = 5^x. Therefore, 5^x = 5 and 5^x = 7. The solution to the former of these equations is obviously 1 as 5^1 = 5. However, the solution to the second eqaution is not as obvious, so we take the natural log of both sides of the equation (any log could be taken as long as the base of the log was the same). So we get ln(5^x) = ln(7). Using the rule ln(a^x) = x ln(a) the equation reduces to x ln(5) = ln(7) hence x = ln(7)/ln(5). So the solution to the equation is x = 1 or x = ln(7)/ln(5)    

JG
Answered by Jacob G. Maths tutor

9509 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The rate of decay of the mass is modelled by the differential equation dx/dt = -(5/2)x. Given that x = 60 when t = 0, solve the quation for x in terms of t.


Consider the curve y=x/(x+4)^0.5. (i) Show that the derivative of the curve is given by dy/dx= (x+8)/2(x+4)^3/2 and (ii) hence find the coordinates of the intersection between the left vertical asymptote and the line tangent to the curve at the origin.


Given f(x) = 3 - 5x + x^3, how can I show that f(x) = 0 has a root (x=a) in the interval 1<a<2?


A smooth 4g marble is held at rest on a smooth plane which is fixed at 30 degrees to a horizontal table. The marble is released from rest - what speed is the marble travelling at 5 seconds after being released? Let g = 9.8ms^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning