Suppose we have a circle whose radius is 5cm. If a sector of this circle has an area of 15 cm^2, what is the size its angle (in degrees)?

Firstly, you would need to figure out what formula you can use to solve this problem. You know the radius and area of the sector, and you need to find the angle. So, the correct equation to use would be the formula for the area of a sector: A = θ/360 x πr2 . Substituting 15 for A and 5 for r, we have 15 = θ/360 x 25π. We then want to make θ the subject of our equation, so we need to multiply both sides by 360, and then divide both sides by 25π. Finally, we have our solution: θ = (15x360)/25π = 68.8 (in 3 s.f.).

RS
Answered by Roxani S. Maths tutor

2886 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the coefficient of the constant term of the expression (2x+1/(4x^3 ))^8


ABC is an acute-angled triangle. BA=7cm and BC=8cm. The area of triangle ABC is 18 cm^2 . Work out the size of angle BAC. Give your answer correct to 3 significant figures. You must show all your working.


Find the positive solution to the equation (x^2+9x+18)/(x^2-9)=10


A 4kg bag of rice costs £3.20 and a 6kg bag of rice costs £5.80. Which bag of rice is the best value for money? Show all your working.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences