Suppose we have a circle whose radius is 5cm. If a sector of this circle has an area of 15 cm^2, what is the size its angle (in degrees)?

Firstly, you would need to figure out what formula you can use to solve this problem. You know the radius and area of the sector, and you need to find the angle. So, the correct equation to use would be the formula for the area of a sector: A = θ/360 x πr2 . Substituting 15 for A and 5 for r, we have 15 = θ/360 x 25π. We then want to make θ the subject of our equation, so we need to multiply both sides by 360, and then divide both sides by 25π. Finally, we have our solution: θ = (15x360)/25π = 68.8 (in 3 s.f.).

RS
Answered by Roxani S. Maths tutor

3399 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve these two equations simultaneously: 7x + y = 1 and 2x^2 - y = 3.


An area of a garden needs to be tiled. It consists of a square area of 10m by 10m, with an outdoor pool in the middle of radius 3m. The tiles to be used are 50cm by 50cm, and cost 50p per tile. Find out how much it will cost to tile the area.


Bob lives 2km away from Alice and the school is 1km away from Bob. Alice sets off to meet Bob at 8am and she meets him at 8:15 and they carry on walking at the same pace. School starts at 8:20. Do they get to school on time? How early/late are they?


ABC and DEF are similar isoceles triangles. AB=BC=5cm, AC=6cm, DF=12cm. What is the area of DEF?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning