A hollow sphere of radius r is being filled with water. The surface area of a hemisphere is 3pi*r^2. Question: When the water is at height r, and filling at a rate of 4cm^3s^-1, what is dS/dT?

By the chain rule ds/dt = ds/dr * dr/dv * dv/t. At a height of r, the water fills a hemisphere. So ds/dr = 6pir. dr/dv = 1/(dv/dr), so we need to find dv/dr. Students should have the formula for the volume of a sphere, which is (4/3)pirso the volume of a hemisphere is (2/3)pir3, which makes dv/dr = 2pir2. Now we know dv/dt=4, so ds/dt = 6pir * 1/(2pir2) * 4 = 24pir/2pir2 = 12/r.

HB
Answered by Henry B. Maths tutor

5471 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = xe^(2x).


a) Differentiate and b) integrate f(x)=xcos(2x) with respect to x


A uniform ladder of mass 5 kg sits upon a smooth wall and atop a rough floor. The floor and wall are perpendicular. Draw a free body diagram for the ladder (you do not need to calculate any forces).


Write down two reasons for using statistical models


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences