A hollow sphere of radius r is being filled with water. The surface area of a hemisphere is 3pi*r^2. Question: When the water is at height r, and filling at a rate of 4cm^3s^-1, what is dS/dT?

By the chain rule ds/dt = ds/dr * dr/dv * dv/t. At a height of r, the water fills a hemisphere. So ds/dr = 6pir. dr/dv = 1/(dv/dr), so we need to find dv/dr. Students should have the formula for the volume of a sphere, which is (4/3)pirso the volume of a hemisphere is (2/3)pir3, which makes dv/dr = 2pir2. Now we know dv/dt=4, so ds/dt = 6pir * 1/(2pir2) * 4 = 24pir/2pir2 = 12/r.

HB
Answered by Henry B. Maths tutor

5767 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify 5p + 2q – 3p – 3q


Solve x^2 - 6x - 2=0 giving your answer in simplified surd form.


Use the substitution u=1+e^x to find the Integral of e^(3x) / (1 + e^x)


A circle C with centre at the point (2, –1) passes through the point A at (4, –5).....


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning