The mass, m grams, of a substance is increasing exponentially so that the mass at time t hours is m=250e^(0.021t). Find the time taken for the mass to double in value.

All exponential equations can be reduced to the form m=m0ekt, where m0 is the initial mass. This means for our equation the initial mass is 250g. If the mass has doubled in size, then m now equals 2*250 = 500g. Plugging this into our exponential equation gives us 500=250e0.021t , which we can then work through as follows to re-arrange for t:

e0.021t = 500/250 = 2

0.021t = ln(2)

t = ln(2) / 0.021 = 33.0070086 = 33.0 hours (3 significant figures)

TJ
Answered by Tom J. Maths tutor

8278 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has a equation y=(2x-3)^5; point P (0.5,-32)lies on that curve. Work out the equation to the tangent to C at point P in the form of y=mx+c


How can you integrate ln(x) with respect to x?


The curve C has equation x^2 + 2xy + 3y^2 = 4. Find dy/dx.


Represent in partial fraction form the expression x/x^2-3x+2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning