Integral of a compound equation (or otherwise finding the area under a graph): f(x) = 10x*(x^(0.5) - 2)

This can be done 'by parts' or by expanding. In this case it would be easier to expand as it is possible to deal with terms individually here.
This becomes: 10xx1/2 - 10x2
                      = 10x3/2 - 20x
We know this because powers of the same value ( x in this case) work additively when multipled, so xa*xb = xa+b. The other term is also just multipled as normal, two lots of 10x = 20x.
When integrating, we may remember this as the opposite of a differential, so that previously the power must have been 1 higher, and the factor is a factor of the power lower. This simply means that the integral of xa = (1/(a+1))xa+1. This then means that the integral with respect to x is:
(10/(5/2))x5/2 - (20/2)x2 + Constant.  This can be simplified (at this point I would show the simplificiations using either a physical whiteboard or online tools)

If we have the limits of the function, we can put those in too, remembering that we substitute it as f(upper limit) - f(lower limit) for a function of f(x). This would also find the area under a graph, if done correctly, remembering to also separate the limits based on if its above or below an axis (would need visual representation, again easy to show on a whiteboard).

RD
Answered by Roden D. Maths tutor

3363 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has the equation x^3 +x^2 -10x +8. Find the points at which C crosses the x axis.


Given a curve has the equation f'(x) = 18x^2-24x-6 and passes through the point (3,40), use integration to find f(x) giving each answer in its simplest form.


What is the centre and radius of the circle with the equation x(x-2)+y(y+6)+4=0 ?


Find values of x in the interval 0<x<360 degrees. For which 5sin^2(x) + 5 sin(x) +4 cos^2(x)=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences