Integrate (x^2+4x+13)/((x+2)^2)(x-1) dx by using partial fractions

Express (x2+4x+13) / (x+2)2(x-1) as partial fractions. (x2+4x+13) / (x+2)2(x-1) = a/(x+2) +b/(x+2)2 +c/(x-1) where a, b and c are constants to be found. Multiplying by the denominator, we get (x2+4x+13) = a(x+2)(x-1) + b(x-1) + c(x+2)2 By setting x=1, we get 18=9c so c=2 By setting x=-2, we get 9=-3b so b=-3 By setting x=0 (or any other number) and using c=2 and b=-3, we get (for x=0) 13=-2a+3+8 so a=-1 Hence, (x2+4x+13) / (x+2)2(x-1) = -1/(x+2) -3/(x+2)2 + 2/(x-1) Integrating the partial fraction, we get -1ln(x+2) + (-3)(-1)(x+2)-2+1 + 2ln(x-1) +c where c is the constant of integration This simplifies down to -ln(x+2) +3/(x+2) +2ln(x-1) +c

DW
Answered by Donny W. Maths tutor

4277 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find dy/dx for the equation y = 6x ^(1/2)+x+3


Find the range of a degree-2 polynomial function such as 2x^2 +1, or x^2 + 2x - 3.


Find the area enclosed by the curve y = cos(x) * e^x and the x-axis on the interval (-pi/2, pi/2)


Differentiate with respect to x: (x^2+5)^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences