Use implicit differentiation to find dy/dx of a curve with equation x^3 + yx^2 = y^2 + 1.

Begin by differentiating each term w.r.t x: d/dx(x^3) + d/dx(yx^2) = d/dx(y^2) + d/dx(1). the terms x^3 and 1 are simple enough to start of with: d/dx(x^3) = 3x^2 and d/dx(1) = 0. Next use the chain rule for the term y^2: d/dx(y^2) = d/dy(y^2) * dy/dx = (2y)dy/dx For the last term, yx^2, we differentiate using the product rule: d/dx(yx^2) = x^2(d/dx)y + y(d/dx)x^2 = 2xy + x^2(dy/dx) (Note that for y(d/dx)x^2 we use the chain rule again). Therefore with all terms differentiated we have: 3x^2 + 2xy + x^2(dy/dx) = (2y)dy/dx. Now we have to rearrange to get dy/dx: (2y - x^2)(dy/dx) =  3x^2 + 2xy ===> dy/dx = (3x^2 + 2xy)/(2y - x^2)

MH
Answered by Marlon H. Maths tutor

4608 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that sin(x)^2 + cos(x)^2 = 1, show that sec(x)^2 - tan(x)^2 = 1 (2 marks). Hence solve for x: tan(x)^2 + cos(x) = 1, x ≠ (2n + 1)π and -2π < x =< 2π(3 marks)


What is [(x+1)/(3x^(2)-3)] - [1/(3x+1)] in its simplest form?


The straight line L1 passes through the points (–1, 3) and (11, 12). Find an equation for L1 in the form ax + by + c = 0, where a, b and c are integers


How do you find the integral of sin^2(x) dx?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning