Solve the equation: 5^(2x+1) = 7, giving your answer correct to four decimal places.

First, we take logs of both sides: log(5^(2x+1))=log(7) Now, using the 3rd law of logs (index rule; using the power as the coefficient), we get: (2x+1)log(5)=log(7) i.e. 2x+1 = (log(7))/(log(5)) = 1.20906... Therefore, 2x=1.209...- 1 = 0.20906... i.e. x = 0.209.../2 = 0.10453... x = 0.1045 (c.t. 4d.p.)

MS
Answered by Mohamad S. Maths tutor

9191 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use implicit differentiation to find dy/dx of the equation 3y^2 + 2^x + 9xy = sin(y).


Find the value of 4!/0!


A curve C is defined by the equation sin3y + 3y*e^(-2x) + 2x^2 = 5, find dy/dx


Given that y=ln([2x-1/2x=1]^1/2) , show that dy/dx= (1/2x-1)-(1/2x+1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences