Solve the equation: 5^(2x+1) = 7, giving your answer correct to four decimal places.

First, we take logs of both sides: log(5^(2x+1))=log(7) Now, using the 3rd law of logs (index rule; using the power as the coefficient), we get: (2x+1)log(5)=log(7) i.e. 2x+1 = (log(7))/(log(5)) = 1.20906... Therefore, 2x=1.209...- 1 = 0.20906... i.e. x = 0.209.../2 = 0.10453... x = 0.1045 (c.t. 4d.p.)

MS
Answered by Mohamad S. Maths tutor

9107 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify: (log(40) - log(20)) + log(3)


A curve passes through the point (4, 8) and satisfies the differential equation dy/dx = 1/ (2x + rootx) , Use a step-by-step method with a step length of 0.3 to estimate the value of y at x = 4.6 . Give your answer to four decimal places.


Use the substitution u=2+ln(t) to find the exact value of the antiderivative of 1/(t(2+ln(t))^2)dt between e and 1.


Given that the equation of the curve y=f(x) passes through the point (-1,0), find f(x) when f'(x)= 12x^2 - 8x +1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences