How do I show that (cos^4x - sin^4x) / cos^2x = 1 - tan^2x

Start with the LHS:

(cos^4x - sin^4x) / cos^2x 

Recognise the difference of two squares on the top line, which simplifies to (cos^2x - sin^2x)(cos^2x + sin^2x):

(cos^2x - sin^2x)(cos^2x + sin^2x) / cos^2x

Because of the identity sin^2x + cos^2x = 1, the second bracket (cos^2x + sin^2x) simplifies to 1:

(cos^2x - sin^2x) / cos^2x

Separate the two parts of the numerator:

(cos^2x / cos^2x) - (sin^2x / cos^2x)

These parts both simplify to 1 and tan^2x respectively:

1 - tan^2x 

= RHS

JM
Answered by Jack M. Maths tutor

18753 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

∫ log(x) dx


Solve the simultaneous equations y + 4x + 1 = 0 and y^2 + 5x^2 + 2x = 0


How would you derive y = function of x; for example: y = 3x^3 + x^2 + x


A man travels 360m along a straight road. He walks for the first 120m at 1.5ms-1, runs the next 180m at 4.5ms-1, and then walks the final 60m at 1.5ms-1. A women travels the same route, in the same time. At what time does the man overtake the women?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning