When Integrating by parts, how do you know which part to make "u" and "dv/dx"?

you need to think about how the integral will be simpliefied, basically you are trying to get to a state where only one function of x resides in the integral. so if you have an x2 sin3x dx inside the integral, you cannot easily get rid of the sin3x. the thing you need to do is be rid of the x2. to do this, we need to differentiate twice to get to a constant, 2. therefore first, we would set x2 as u, and sin3x as dv/dx. after 2 runs through integration by parts, the function inside the integral will be easily found. Here we end up with du/dx = 2x and v = 1/3 cos3x. We then get 1/3 x2cos3x - integral of 2/3 xcos3x dx. using integration by parts again we get du/dx = 2/x, meaning now inside the integral we have a single function only consisting of a multiplier and a sin3x term.

TG
Answered by Thomas G. Maths tutor

3340 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For a curve of gradient dy/dx = (2/(x^2))-x/4, determine a) d^2y/dx^2 b) the stationary point where y=5/2 c) whether this is a maximum or minmum point and d) the equation of the curve


The second and fourth term of a geometric series is 100 and 225 respectively. Find the common ratio and first term of the series. Round your answer to 2 d.p if necessary


Find the area bounded be the curve with the equation y = x^2, the line x = 1, the line x = -1, and the x-axis.


i) It is given that f(x)=(-5-33x)/((1+x)(1+5x)), express f(x) in the form A/(1+x) + B/(1+5x) where A,B are integers. ii) hence express the integral of f(x) between x=3 and x=0 in the form (p/q)ln4 where p,q are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning