Solve simultaneous equations x + y = 3 and -3x + 5y = 7

The first equation can be multiplied by 3 to give 3x + 3y = 9. Then these two equations can be added by summing both left hand sides and both right hand sides to obtain the new equation 3x + 3y - 3x + 5y = 9 + 7. Now 3x and -3x can be cancelled out and 3y + 5y simplified to 8y which gives 8y = 16. Dividing both sides by 8 gives y = 2.

To obtain x, value of y = 2 can be substituted into any equation, preferably, the simpler one. Thus, x + 2 = 3 and x = 1. Therefore, the final answer is x = 1, y = 2.

JV
Answered by Jonas V. Maths tutor

4007 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If L1 is y = 3x + 15 and L2 is 3y + 20 = 9x show whether or not L1 and L2 are parallel.


Factorise 7x +14


In 2017 the number of teachers in a school was 20. The number of teachers doubles each year. If in 2019 3/5 of the teachers are female how many male teachers are there in 2019?


An area of a garden needs to be tiled. It consists of a square area of 10m by 10m, with an outdoor pool in the middle of radius 3m. The tiles to be used are 50cm by 50cm, and cost 50p per tile. Find out how much it will cost to tile the area.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning