Using partial fractions, find f(x) if f'(x)=5/(2x-1)(x-3)

First step: partial fractions 5/(2x-1)(x-3) 5=A(x-3)+B(2x-1) A=0 when x=3, so B=5/(2x3-1)=1 B=0 when x=1/2, so A=5/(0.5-3)=-2 So f'(x)=1/(x-3)-2/(2x-1) Second step: Integration f(x)= (integral)(1/(x-3))dx - 2(integral)(1/(2x-1))dx = ln|x-3| - 2/2ln|2x-1| + C = ln|(x-3)/(2x-1)| + C

JF
Answered by Jasmin F. Maths tutor

4794 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of 4x^2 - 10x + 1/(x^(1/2)), with respect to x, in its simplest form.


Find the derivative (dy/dx) of the curve equation x^2 -y^2 +y = 1.


Given that (2x-1) : (x-4) = (16x+1) : (2x-1), find the possible values of x


A curve has equation y=x^2 + (3k - 4)x + 13 and a line has equation y = 2x + k, where k is constant. Show that the x-coordinate of any point of intersection of the line and curve satisfies the equation: x^2 + 3(k - 2)x + 13 - k = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning