Using partial fractions, find f(x) if f'(x)=5/(2x-1)(x-3)

First step: partial fractions 5/(2x-1)(x-3) 5=A(x-3)+B(2x-1) A=0 when x=3, so B=5/(2x3-1)=1 B=0 when x=1/2, so A=5/(0.5-3)=-2 So f'(x)=1/(x-3)-2/(2x-1) Second step: Integration f(x)= (integral)(1/(x-3))dx - 2(integral)(1/(2x-1))dx = ln|x-3| - 2/2ln|2x-1| + C = ln|(x-3)/(2x-1)| + C

JF
Answered by Jasmin F. Maths tutor

5075 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a) i) find dy/dx of y = 3x^4 - 8x^3 - 3 ii) then find d^2y/dx^2 b) verify that x=2 at a stationary point on the curve c c) is this point a minima or a maxima


Differentiate f(x) = (x+3)/(2x-5) using the quotient rule.


What is the Product Rule?


Integrate 3x^4-4x^2+3/x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning