Using partial fractions, find f(x) if f'(x)=5/(2x-1)(x-3)

First step: partial fractions 5/(2x-1)(x-3) 5=A(x-3)+B(2x-1) A=0 when x=3, so B=5/(2x3-1)=1 B=0 when x=1/2, so A=5/(0.5-3)=-2 So f'(x)=1/(x-3)-2/(2x-1) Second step: Integration f(x)= (integral)(1/(x-3))dx - 2(integral)(1/(2x-1))dx = ln|x-3| - 2/2ln|2x-1| + C = ln|(x-3)/(2x-1)| + C

JF
Answered by Jasmin F. Maths tutor

5077 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the equation of a curve with gradient 4x^3 -7x + 3/2 which passes through the point (2,9)?


Find the first 4 term of the binomial expansion (2-4x)^5


You are given the function f(x)=x^3-x^2-7x+3, and that x=3 is a root of f(x)=0. Find the exact values of the other 2 roots. (6 marks)


The curve C has equation y = (x^2 -4x - 2)^2. Point P lies on C and has coordinates (3,N). Find: a) the value of N. b) the equation of the tangent to C at the point P, in the form y=mx+c where m and c are constants to be found. c) determine d^2y/dx^2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning