Differentiate with respect to x, x^2*e^(tan(x))

Use the product rule: d/dx(uv) = uv' + u'v, with u = x^2 and v = e^(tan(x)), so that u' = 2x and v' = sec^2(x) * e^(tan(x)), and so the answer is 2x * e^(tan(x)) + x^2 * sec^2(x) * e^(tan(x)) .

JH
Answered by Jakub H. Maths tutor

4856 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x) = x^3 - 13x^2 + 55x - 75 , find the gradient of the tangent at x=3


Using answer to previous question state the coordinates of the minimum


The curve C has the equation: y=3x^2*(x+2)^6 Find dy/dx


How do I find the roots of a quadratic equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences