A curve is defined by the parametric equations: X = 3 – 4t , y = 1 + (2/t) Find (dy/dx) in terms of t.

When dividing fractions by fractions with a common factor:

(a/c) / (b/c) = (a/c) * (c/b) = (ac/bc) we can cancel the common factor to get (a/b).

So in this question we can do the same:

(dy/dt) / (dx/dt) = (dy/dt) * (dt/dx) = (dy/dx)

So calculating dy/dt:

Using d/dx x^n = nx^(n-1)

Y = 1 + (2/t) = 1 + 2t^(-1)

dy/dt = 0 – 2t^(-2) = -2/t^(2)

Calculating dx/dt:

X = 3 – 4t

dy/dx = -4

Finally, dy/dx:

dy/dx = (dy/dt) / (dx/dt) = (-2/t^(2)) / (-4) = -2/(-4t^2)

= 1/2t^2

EE
Answered by Eddie E. Maths tutor

5099 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to x: (4x^2+3x+9)


The function f is defined by f(x)= 2/(x-3) + x - 6 . Determine the coordinates of the points where the graph of f intersects the coordinate axes.


A girl kicks a ball at a horizontal speed of 15ms^1 off of a ledge 20m above the ground. What is the horizontal displacement of the ball when it hits the ground?


A Block of mass 2kg is on an a smooth inclined plane where sin@ = 3/5 at point A. Point B is 5 meters down the incline. Find the time it will take for the block to reach point given it is at rest at point A.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences