How do I break down (x-2)/((x+1)(x-1)^2) into partial fractions?

Firstly, let (x-2)/((x+1)(x-1)2) = A/(x+1) + B/(x-1)+C/(x-1)2, where A,B and C are to be calculated. 

Then, multiply both sides of the equation by (x+1)(x-1)2 which will leave an equation as follows;

x-2 = A(x-1)2 + B(x+1)(x-1) +C(x+1). Now let x=1.

-1 = 0A + 0B + 2C   this implies C = -1/2

Now let x = -1

-3 = A*(-2)2  + 0B + 0C  this implies -3=4*A which means A = -3/4

Now we have equation: x-2 = (-3/4)(x-1)2  + B(x-1)(x+1)  -(1/2)(x+1)

If we let x = 0 we get; 

-2 = -3/4 -B  - 1/2 giving; 

-2 = -5/4 - B          Adding 5/4 to both sides gives  -3/4 = - B from which we can see B = 3/4

now we have transformed our initial fraction into partial fractions; 

(x-2)/((x+1)(x-1)2) = -3/4(x+1) + 3/4(x-1)  -1/2(x-1)2 

To check your answers enter in an arbitrary x, both sides should come to the same number. 

DO
Answered by Daniel O. Maths tutor

4113 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What exactly IS differentiation?


A cricket player is capable of throwing a ball at velocity v. Neglecting air resistance, what angle from the horizontal should they throw at to achieve maximum distance before contact with the ground? How far is that distance?


Differentiate the following: y=(7x^2+2)sinx


Differentiate f(x)= x^3 + x^(1/3)-2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning