The mass of a substance is increasing exponentially. Initially its mass is 37.5g, 5 months later its mass is 52g. What is its mass 9 months after the initial value to 2 d.p?

M=37.5ekt 52=37.5ek5 52/37.5=e5k ln(52/37.5)=5k (1/5)(ln(52/37.5))=k k≈0.06538 when t=9, M=37.5e9*0.06538 M=67.54

RR
Answered by Riccardo R. Maths tutor

4425 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = cos(3x)cosec(5x), use the product rule to find dy/dx.


How do I intregrate ln(x)?


differentiate y = 4x^3(12e^-4x) with respect to x


Integrate the following fraction w.r.t. x: (sqrt(x^2 + 1)-sqrt(x^2 - 1))/(sqrt(x^4 - 1))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning